	44
	Review of Management and Economical Engineering, Vol. 6, No. 5

	International Conference on Business Excellence 2007
	43

REPLACING FACTUAL AND PROCEDURAL KNOWLEDGE BY LOGICAL KNOWLEDGE IN APPLICATION SOFTWARE
Vasile AVRAM
Academy of Economic Studies, Bucharest, Romania
vasileavram@ie.ase.ro
Abstract: The paper realizes a comparison of procedural programming, incorporating both factual and procedural knowledge, with the definition of logical knowledge as business rules by means of business rules engines. This is helpful, if you plan to automate new tasks or to re-engineering existing procedural applications, to decide what method you apply.
Keywords: logical knowledge, factual knowledge, procedural knowledge

1. INTRODUCTION
The evolution of information processing paradigm during the past four decades to build intelligence and manage change in business functions has generally progressed over three phases: automation, rationalization of procedures, and reengineering. To this ones added the fourth phase, the today knowledge management (Avram and Avram, 2007):

1. Automation – increased efficiency of operations;

2. Rationalization of procedures – streamlining of procedures and eliminating obvious bottlenecks that are revealed by automation for enhanced efficiency of operations;

3. Reengineering – radical redesign of business processes that depends on information technologies – intensive radical redesign of workflows and work processes (redesign to e-business);

4. Knowledge Management - identifying, creating, representing, and distributing knowledge for reuse, awareness, and learning across the organizations.

2. FACTUAL AND PROCEDURAL KNOWLEDGE
During the past decades (covered by the points 1 to 3) the traditional software tools provides two ways for encoding and incorporating knowledge in application programs: as facts, represented generally as structured data stored in memory; as sequences of instructions in procedural database queries, web scripts or programming language.

For that reason, this type of representation of knowledge is denoted by the term of factual and procedural knowledge (figure 1). These two types are natural representations for the today’s common computer architecture and represented in the way the computer engineered: a powerful central processing unit (CPU) that deals with arithmetic and logic operations (it executes instructions given as procedures) connected to a live memory (main memory) and to mass storage memory (facts recorded).
[image: image1.jpg]Program

I

CPU

iy

output
L3

Figure 1 The representation of processing for Factual and procedural knowledge

<script type="text/javascript" language="javascript">

<!—

/* General Parameters */
 var startFreeTimeFriday=15;

 var salRaiseOverTime=1.5;

 var hourlySalary=18;
/* The rules to compute the HourlySalary */
 function Salary(day, workedHours, plannedHours)

 {

 if(day="Saturday" || day="Sunday" || (day="Friday" & workedHours > startFreeTimeFriday) || workedHours>plannedHours)

 { Salary=workedHours*hourlySalary+salRaiseOverTime*(
hourlySalary*(workedHours-plannedHours));

 }

 else

 {

 Salary=plannedHours*hourlySalary

 }

 }

 -->

 </script>
Figure 2 A simple JavaScript to compute the salary
The essence of the matter is that computers are devices that simulate the way that we handle things (Avram, Dodescu, 2003) and in that case they simulate the way we manipulate knowledge. The program in figure 1 can be, for a simple hourly salary computation, the code listed in figure 2, where we have some facts represented such
as the number of times the salary raise when somebody works overtime (salRaiseOverTime) or the amount of salary for one hour (hourlySalary) and computational formulas to calculate the salary depending on the circumstances (normal salary when no overtime worked and a raised salary when works overtime or in the free time). Encoded in that way, as facts and/or as procedures, the knowledge representation is difficult to be identified and even to be re-comprehended by its author at a later time. This knowledge representation is too formal and too difficult for maintain and deduce in a natural way. In that case the incorporated knowledge is processed by the physical machine: the CPU executes the procedures having as input the recorded facts. When designed and realized applications incorporating factual and procedural knowledge this one is provided by policy experts and modeled and formalized by IT experts.
3. LOGICAL KNOWLEDGE
[image: image2.jpg][l | Bulis
B Reasoning
Engine
o

I

output

(answer)

Figure 3 The representation of processing for Logical knowledge [ARulesXL]

Starting with the point 4 (it also happens now) the software tools provides the representation of the knowledge as logical knowledge that means as relationships that mimics the human decision making. In a natural language, and more precisely on paper, the knowledge can be represented as rules, decision tables that supplies answers, graphs showing connections, formats specific to a given application area etc. The relationships defining the knowledge are more complex that ones that can be represented in databases. In that case the knowledge is processed by a virtual machine running in a physical one. This is indicated in figure 3 by facts and rules (they form the knowledge base) and by the reasoning engine that uses the CPU to find an answer. This virtual machine can be identified in all of the tools available for business rule systems, expert systems, knowledge base systems, case-base systems and others [ARulesXL]. This logical knowledge creates the premises to be modelled, handled and defined/used directly by the domain experts (and policy experts) without or little intervention in the processes of IT experts. The definition of knowledge is realized more and more closed to the natural language and/or with requiring little informatic knowledge from the part of domain experts (for example, general office support tools, like applications in Microsoft Office package).
The facts and rules outlined in figure 3 can be represented, for the same simple problem of salary computation, as in figure 4.
The facts as table values:

	Day
	plannedHours
	workedHours
	Salary

	Monday
	8
	10
	

	Tuesday
	8
	10
	

	Wednesday
	8
	8
	

	Thursday
	8
	8
	

	Friday
	5
	8
	

	Saturday
	0
	8
	

	Sunday
	0
	6
	

	Total Salary
	
	
	

And the Business Rules:

Salary = workedHours * hourlySalary WHEN
(workedHours <= plannedHours AND NOT FreeTime)

Salary = plannedHours * hourlySalary + salRaiseOverTime *

(hourlySalary * (workedHours - plannedHours))

when (workedHours > plannedHours or FreeTime)

FreeTime WHEN Day ="Saturday" OR Day = "Sunday"

FreeTime WHEN Day = "Friday" AND

workedHours > startFreeTimeFiday

Figure 4 The representation of processing for Logical knowledge [ARulesXL]
The rules here can be expressed directly in a natural language as follows:

- the salary is obtained by multiplying the worked hours with the tariff when is not weekend and no overtime worked;

- the salary is obtained by multiplying the allowed time with the tariff and by raising that with one and half time the salary computed for the difference between the worked time and the allowed time when is overtime or weekend;

- the weekend is when the day is “Saturday” or “Sunday” or is “Friday” after the beginning of weekend.

The rules and the example taken here are expressed with respect of the grammar and definition rules of the product ARulesXL of Amzi Inc.

The facts and rules are interpreted together by the reasoning engine (figure 3) which determines for every cell in column Salary in the table the right salary computation rule depending on the facts recorded (day, allowed time, worked time) into the table and other general parameters (such as salRaiseOverTime).

4. CONCLUSIONS

The conclusions I want outline here refers to:

· by using rules we can eliminate the complex If instructions used in procedural programming to model decisions;

· we can define the rules by using a formal manner, with a very simple syntax, and closed to the natural language. This is very helpful to collect and define formally the business rules in a central rule base that can be used by all workers and applications in the company;

· by the simplicity of expression the automation effort is redirected from programmers to data-workers and domain-workers; it allows in that way to automate the decision at operational level;

· the application can be easy adapted to changes by reflecting that changes in the definition of business rules;

· the defined rules are “accessible” (they closed to the natural language and can be easy translated in this one).

The product that allows this type of definitions is called ARulesXL realized by US Amzi Inc Company. The product allows combine the computational power of Excel with a rules engine allowing defining, collecting and deploying the business rules inside the company. This task can be accomplished without requiring a high IT qualification for domain workers (is enough to know what is supposed they know: the office package, most precisely working with spreadsheets).

 5. REFERENCES
Avram V, Avram D (2007), Managing Knowledge within the Small and Midsized Companies in Informatics in Knowledge Society, Editura Economica, pages 621-626
Avram V, Dodescu Ghe (2003), Informatics: Computer Hardware and Programming in Visual Basic, Editura Economica, page 14
ARulesXL – http://www.arulexl.com
http://www.forrester.com
Building Flexible Enterprise Processes Using Oracle Business Rules and BPEL process Manager, Oracle Corporation, Ian 2005 from http://www.oracle.com
Defining Business Rules – What Are They Really ?, Business Rules Group, Final Report, revision 1.3, July 2000, from http://www.businessrulesgroup.org

